• 瀏覽: 152,667
  • 回覆: 522
  • 追帖: 4
[隱藏]

回覆 引用 TOP

熱賣及精選

回覆 引用 TOP

回覆 引用 TOP

LeetCode OJ - Min Stack
LeetCode OJ - Power of Two

[ 本帖最後由 darigold 於 2015-7-19 08:02 AM 編輯 ]



回覆 引用 TOP

[隱藏]
Power of two汪汪係咁check

n & (n - 1) == 0






回覆 引用 TOP

引用:
原帖由 Susan﹏汪汪 於 2015-7-19 08:09 AM 發表

Power of two汪汪係咁checkn & (n - 1) == 0
不錯,更簡單。
但係 n=0 output true?



回覆 引用 TOP

回覆 引用 TOP

引用:
原帖由 darigold 於 2015-7-19 10:38 AM 發表


不錯,更簡單。
但係 n=0 output true?
例1
數字n = 26 (11010)
n - 1 = 25 (11001)
n & (n - 1) = 24 (11000)


例2
數字n = 64 (1000000)
n - 1 = 63 (111111)
n & (n - 1) = 0 (0)



回覆 引用 TOP

LeetCode OJ - Binary Search Tree Iterator

[ 本帖最後由 darigold 於 2015-7-19 10:18 PM 編輯 ]



回覆 引用 TOP

[隱藏]
引用:
原帖由 Susan﹏汪汪 於 2015-7-19 11:02 AM 發表

例1
數字n = 26 (11010)
n - 1 = 25 (11001)
n & (n - 1) = 24 (11000)


例2
數字n = 64 (01000000)
n - 1 = 63 (00111111)
n & (n - 1) = 0 (0)
有兩個bugs

例3
數字n = 0 (00000)
n - 1 = -1 (11111)
n & (n - 1) = 0 (00000)


例4
數字n = -int.Max (1000000)
n - 1 = int.Max (111111)
n & (n - 1) = 0 (0)加上n > 0 就 perfect。



回覆 引用 TOP

回覆 引用 TOP

回覆 引用 TOP

引用:
原帖由 darigold 於 2015-7-19 10:23 PM 發表


有兩個bugs

例3
數字n = 0 (00000)
n - 1 = -1 (11111)
n & (n - 1) = 0 (00000)


例4
數字n = -int.Max (1000000)
n - 1 = int.Max (111111)
n & (n - 1) = 0 (0)加上n > 0 就 perfect。
係、汪汪寫果時已經check晒
之前係主要用係FFT個Radix 2算法






回覆 引用 TOP

回覆 引用 TOP

[隱藏]

回覆 引用 TOP

提示:支持鍵盤翻頁左 右
[按此隱藏 Google 建議的相符內容]